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Platelet aggregation plays an important role in blood clotting. Robust numerical
methods for simulating the behavior of Fogelson’s continuum models of platelet ag-
gregation have been developed which in particular involve a hybrid finite-difference
and spectral method for the models’ link evolution equation. This partial differ-
ential equation involve$our spatial dimensions and time. The new methods are
used to begin investigating the influence of new chemically induced activation, link
formation, and shear-induced link breaking in determining when aggregates de-
velop sufficient strength to remain intact and when they are broken apart by fluid
Stresses. © 1999 Academic Press
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1. INTRODUCTION

The aggregation of blood platelets is one of the first steps in thrombosis and no
hemostasis. It can contribute to prevention of excessive blood loss when a blood ves
injured, and it can also result in occlusive arterial diseases. In particular, abnormal pl
aggregation in the coronary arteries can limit the blood flow to the heart muscle, thus lez
to cardiac ischemia, life-threatening arrhythmias, and myocardial necrosis [24]. This \
concerns the development of numerical methods for studying mathematical mode
platelet aggregation in vessels the size of the coronary arteries or larger.

Under normal conditions, platelets circulate in the blood flow with a disc shape an
a nonadherent state. However, when a blood vessel wall is damaged by injury or dis
a variety of platelet-reactive substances, most noteworthy of which are the collagen:
exposed to the blood. Circulating platelets that contact the damaged wall may be induc
begin an activation process in which (1) the platelets change shape to a spherical spin
and then release chemicals into blood which can activate other platelets; (2) the memk
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650 WANG AND FOGELSON

of the platelets become sticky and capable of adhesion with other activated platelet
the process is functioning correctly, a platelet plug forms at the injury site. Many clinic
results indicate that a deficiency in circulating platelets is associated with “spontanec
hemorrhages from small vessels. Platelets are hence thought to have an important rc
maintaining the functional integrity of these vessels [6].

The dense granules in the platelet cytoplasm contain a number of chemicals, which
secreted into the surrounding fluid when the platelet is activated. One of these reles
chemicals, ADP, is thought to be the primary nucleotide that causes platelet aggrege
in physiological situations [22]. For human platelets, ADP can induce different ever
depending on its concentration. In a stirred suspension of platelets, ADP at low concer
tions induces reversible aggregation, while sufficiently high concentrations of ADP indu
irreversible aggregation as well as the secretion of additional ADP by the platelets [15]

Platelets and activating chemicals are carried by the moving fluid. Exposure of plate
to high enough levels of chemical activate them, causing them to release more chemical
priming them to cohere. The growth of platelet aggregates as platelets adhere to the dan
vessel wall and to one another disturbs the local fluid motion, sometimes profoundly,
this completes the cycle of coupling among platelets, fluid, and chemical.

Fogelson’s continuum models of plateletaggregation[11, 12] describe interactions am
a viscous, incompressible fluid with velocityx, t) and pressur@(x, t); populations of
nonactivated and activated platelets with densitig&, t) and ¢4 (X, t), respectively; a
distribution of interplatelet bonds with densig(x, v, t); and the activating chemical ADP
with concentratiore(x, t). The models involve two distinct length scales: the diameter ¢
a coronary artery is on the order of 1-2 mm, and the diameter of a platelet is ahout 2
Therefore, two sets of spatial variables appear in the models. Thesarate for which the
statement$| = O(1) and|v| = O(1) indicate lengths comparable to a vessel diameter ar
platelet diameter, respectively. The ratio of platelet diameter to vessel diameter is den
by €, ande « 1. The equations of the continuum models are derived in the limit th:
€ — 0.

A general form of the models involves the equations

p(U +U-VU) = —Vp+ uAu+f9 + P, 1)
V.u=0, )

On
ot +U-Vé¢n = DpAgn — R(C)¢n, (3)
% +U-Vga = R(C)Cbnv (4)
% +u-Vc= D.Ac+ AR(C)¢n, (5)
Et4+U- VE + (v- VU) - WE = a(lv)¢; — B(V)E, (6)
fPx, t) = % /V~VXE(X, v, 1)S(|v])v dv. @)

The motion of the fluid is described by the incompressible Navier—Stokes equations
and (2) with constant densigyand viscosity:. There are two force density termsin Eq. (1):
f9 is a given force density to drive a background flow, éhdcalled the cohesion-force
density, is produced by the interplatelet bonds between activated platelets.
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Equations (3)—(5) concern changes in the platelet densities and the concentratic
ADP. Each of these is transported by advection with velouitgnd by diffusion. The
diffusive motion of platelets is due to local flow disturbances induced by the tumbling
blood cells. We expect that the influence of this motion on activated platelets within
aggregate is less than that on single nonactivated platelets. For simplicity, the activ
platelets are assumed to have no diffusive motion. When platelets are activated, the de
of nonactivated platelets decreases at the R{t®¢,, and the activated platelet density
increases at the same rate. There is a corresponding production of ADP afd(ajé,,
whereA is the amount of ADP secreted by a single platelet.

The evolution of the density of interplatelet bongx, v, t) is described in Eq. (6)E
is a function of timet, the usual spatial coordinates as well as the (scaled) vecter
that represents the connection between two ends of an interplatelet Basddvected
at velocityu in x-space and at velocitgv - Vu) in v-space. The latter term is due to the
difference in velocityu at the two ends of an interplatelet bond. The right hand side
Eq. (6) states that new bonds are created at thew@)¢2, and that existing bonds are
broken at the rat@(|v|)E. Equation (7) gives the cohesion-force density in terms of ¢
integral over all of/-space with the integrand involvingE and the forceS(|v|)v generated
by a single bond of lengttv| and directiornv/|v|. Detailed derivations of Egs. (6)—(7) can
be found in [11].

We can also define the cohesion-stressora P(x, t) by the formula

oPx, 1) = %/E(x,v, t)S(lv))w' dv. (8)

If we know g P, then we can obtain the cohesion-force deritgs its divergence

fP=vV.oP 9

In Eq. (6),0 andp are the rate functions for creating and breaking interplatelet bonds,
spectively, and both are dependent on the bond Igmgtin the special case that|v|) = o
is a constant independent|ef, and under the additional assumption that each bond bre:
with a linear spring with zero resting lengtB(|v|) = ko), then a transport equation far
can be derived (see [11]) o

0P, +U-VaP = 0" Yu+ (P YU)T + g2l — fioo®, (10)

which is a 2-dimensional partial differential equation. In this special case, we can
Egs. (9)—(10) in place of Egs. (6)—(7), and since all referengadtops out, computing the
models’ solution is much less costly than for the general form of the models. The spe
case of the platelet aggregation models was studied computationally by Fogelsonin[11

In this paper, we are concerned with developing numerical methods for studying, in
dimensions, the general form of the aggregation models given by Eqgs. (1)—(7). The ge
form requires solving théour-dimensionapartial differential equation (6) and integrating
over v-space to compute the cohesion force denSitat each poini according to the
formula (7). The motivation for wanting to study the general form of the models is t
only it permits the interplatelet bonds to be sensitive to strain within an aggregate; Eq
allows us to study both a strain-dependent bond breakingate and a bond force which
depends nonlinearly on the strain.
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Equation (6) is a partial differential equation which involves time and four independe
spatial variables. It is the most challenging part of the models to solve. To make it m
tractable, we transform the-plane in (6) into polar coordinatgs, 8) and use spectral
methods to take advantage B periodicity in6. The term(v - Vu) - V, E in (6), which
describes convection & in v-space at “velocity’(v - Vu), is the only nontrivial term to
transform. After some algebra, we find that

V-VUu) - VWE =T1p@)E (X, 1,0,t) + q(@)Eg (X, 1,0,1),
where
P(8) = Uy COF O + (vy + Uy) SN COSH + vy SirF 6,
and
q(0) = vx COF O + (—Ux + vy) SN COSH — Uy SirF 6.

Both p andq depend on the first partial derivatives of the components ahd have
the property that @(0) + g’'(9) = 0. This is a consequence of the incompressibility of the
velocity u. Now, Eq. (6) becomes

Ec(X,1,0,t) +u- VEMXT,0,1) +rp@)E (X, 1,0,1) +q@O)Es(x,1,6,1)
=a(r)p2(x, t) — BEX,T,6,1). (11)

We also rewrite the cohesion force formula (7) in polar coordinates as
1 [T e
fPx,t) = 5/ / v(r,0) -gx,r,0,t)S(rv(r, 0)rdodr
o Jo

1 [ . r cosd
= E/o/o (rcos@gl+rsm@gz)(rSmQ)S(r)rdedr

x—periodic /r_/” COS' 001 + SN0 COSIGL | o 3y 4 (12)
o Jo \sindcosdg; + sirf6g,

whereg(x, r, 8,1t) = VyE(x, , 8, 1), and we truncate theintegration at =r = O(1) be-
causeE is negligibly small for > 1 (see [11]).

The numerical method we developed makes use of high-resolution finite differer
schemes originally developed for nonlinear conservation laws [20] and of Fourier sp
tral methods [7, 13]. Therefore, Section 2 presents a hybrid algorithm combining a spec
method and finite-difference scheme. A special case is tested and the algorithm is shov
be numerically second order accurate. A brief description of the advection scheme is g
in Section 3. A numerical algorithm for a partial differential equation with four spati
variables is tested in Section 4. This is preparation for solving the full continuum mode
Section 5 describes the numerical methods for the full continuum model as well as
design and results of a series of numerical experiments on the full model. It also descr
experiments which use the new numerical methods to examine the mechanical properti
the platelet aggregate composite material. Finally, Section 6 contains the conclusions
plans for future work.
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2. HYBRID SCHEME FOR THE TWO-DIMENSIONAL MODEL PROBLEM

In this section we consider numerical methods for equations that modeidependent
terms in the evolution equation (11) for the density of interplatelet bdndRecall that
when polar coordinates are used to describevtpéane, this equation contains terms o
the formrp(0)E, andq(@)Es where the functionp(9) andq(f) satisfy the constraint
2p®) +9'(9) =0.

We consider the model equation

ft+rp@ fr +q@)fs =0 (13)
f(r,6,0) =qg(r,0)

in the domain G<r <1,0<6 < 2%. We are interested in the case th#aY), q(0), and
g(r, 0) arem-periodic in6, and thenf (r,0,t) is easily seen to be-periodic as well.
Hence, it suffices to consider<06 < .

We discretize thé-interval [0, ) using the nodes); = JW” j=0,...,N—1, and we
discretize ther-interval [0, 1] using the points; = IM i=0,..., M. The notationfif‘j
denotes the value of the numerical solution at timenAt, at 6 =6; = 47, and at the
center of theth cell [r; — ﬁ r + ﬁ]. The layout of cells is shown in Fig. 1.

We approximate the ternfy using a spectral method [7, 13]. For us, the benefit of th
method is not the extraordinary accuracy available for I&tdsut rather the small size of
N necessary for a moderately accurate solution. The approximate deriMagiver] 0, t)]

is defined as

N/2—1 ‘
[Defro.0];= > ae*, j=01...N-1

k=—N/2
where

SNt g, nek, ifk=—-N/2-1,...,N/2—1,
a = ,
0, if k=—N/2.

This is called the Fourier collocation derivative of the functib(r, 6, t), based on the
collocation pointgo; }. To calculate the collocation derivative, one calculates the coefficiel

0 i

FIG. 1. Cellsin polar coordinates.
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of the discrete Fourier transform df multiplies thekth coefficient byik for eachk, then
transforms the resulting Fourier coefficients back to physical space using the inverse Fol
transform. A reason for using a collocation approach is that it can be applied to a varie
coefficient problem, and Fourier series are appropriate for problems with periodic bounc
conditions.

To approximate thep(9) f, term, we adapt the approach of Bell and Marcus [1], whict
in turn was motivated by Colella’s multidimensional upwind schemes for nonlinear cons
vation laws [9]. To beginf is extrapolated to the left side of edge-r; + ﬁ of celli at
time t"1/2 using

f“+£ al n+g oy’ —f“+£ o n+g —r (e)ﬂ— (e)ﬂn
M2 \or ) 2\t )y M 2 \ar ) 2 PO 995, i

The partial differential equation was used to repl%@:eby spatial derivatives of . Upon
approximating the spatial derivatives, we obtain the approximate mid-time edge value

1 At
= 0+ Slar = atrip@PI(f7); ; — 9@ Do 1] ;.

Similarly, f is extrapolated to the right side of edge:ri1 — 5 =i + 5 of cell (i +1)
to give

1 At
fiTle,sz = ) — E[Ar + Atri11p(0; )](frn)i+1,j - 7q(91)[D9 fn]i+1,j'

Here
(AT ™)
()i = =2
where
min{3| % — fh0]- 2/ f%e; — B2/ 60 — f20 ]}
(ATFMij =9 xsgn(ffiy;— £ ), if (fhy; — %) (f = fy;) > 0,
0 otherwise

That is, these are limited approximations to thderivatives at the-edges of each cell.
Next, the choice of edge values bfis resolved by solving a Riemann problem, i.e.,

1/2,L .
fir]j'l/z’j , if p(o;) > 0,

+1/2 1/2,R .
5 = ¢ R if pg;) <O,

1/2,L 1/2,R f
%(fiTl/é,j + fir]++:L//2,j ). if p) =0.

Then, the edge values are used in a difference approximatign to
n+1/2 n+1/2

. _f .
(rpfo)il} % = ri p(o)) R AL (14)
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In most applications of spectral methods to partial differential equations the spatial
cretization is spectral but the temporal discretization is based on finite-differences. M
standard numerical time discretization schemes [16] can be applied, including, for ex
ple, the Runge—Kutta methods, the Leap-Frog method, the Adams—Bashforth method:
so on. The choice of time discretization scheme influences the accuracy, stability, stc
requirements, and work demands of the methods. In particular, the stability for a g
problem is connected with the spectrum of the spatial discretization.

The stability region of the third-order Adams—Bashforth (AB3) method applied to t
linear model problengu; = Au) contains a portion of the imaginary axis. Hence, for su
ficiently small time stepAt > 0, the products ofAt times the eigenvalues of the spatia
operator for the Fourier approximations to periodic advection problems lie entirely in
stability region; the AB3 method is stable for this particular problem.

The AB3 method is a three-level scheme. To use this method, we need to provide
values of f at time At and 2At, in advance. There are many ways to dgétand f2, and
using the Euler method is one possibility. In the following, when we mention the Al
method, that means we use the Euler method first to olftaamd f 2, then we use the AB3
method to get approximations &¢f' for n> 3.

Combining the spectral term discretized in time using the AB3 method, and the differe
approximation tof, (14), our overall method for Eq. (13) is

nt1l/2  entl/2 -
fi|:1j+1 _ fl?] _ Atri p] I+1/2,JAr i—1/2,] _ Atq] [D9 fn]lJ ) (15)
Here, p; = p(#)), q; =q(¥;), and
a3 23 16 1 5 P
[D9fn]i,j =1—2[D9f”}i’j—1—2[D9f” ]i,j_E[Defn ]i,j‘

The computational grid points in thredirection are extended by two cells, so the ce
edge values of on the original boundary can be determined. The normal velocity at ec
boundary point possibly points inward or outward, or is even still. We therefore set
boundary conditions for the extra two cells in theirection as follows: Ifp(¢;) > 0, that
is, the boundary condition is outflow, we use zero order extrapolation from the interio
the domain to obtain

fl\r}|+1,j = fl\r}|+2,j = fl\r)l,j~
If p(8;) <0, i.e., inflow or no-flow boundary condition, we set
flUlJrl,j = fl\r)l+2,j =0.
We also need a value df atr =0, which we take as the cell average fobver a disc

r< %. For a half discHg of radiusR = % centered at =0, we integrate (13) overr
and assume tha& is small and thaff is constant inr, 6) within Hg. We get

2 T
9t ™R 2 —Rz/ p®) f (R, 0, 1) 6. (16)
dt 2 0
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We use a discrete version of (16), namely

j=1

2At
= fg — N Z P; fln/J2r,lj/2‘ (17)
=)

To test our method for Eq. (13) we apply it in the case
1 .
p©) = = S|n219 q(0) = —sirf e,

which corresponds to the shear flaw= (y — 0.5, 0). With this choice ofp andq, (13)
becomes

fo 4+ %sin Hf, — sifof, = 0. (18)
We take as initial condition
1
f(r,0,0) = 5[1 —tanha(r —0.2)], =15, (19)

and find (after tedious calculation) that the true solution is

1
f(ro,t)= 5[1 — tanha(r (1 — tsin® + t?sirf )2 — 0.2)]. (20)
We fix Ar = 614, At = 642, and varyA6 from fz to z;. Up tot = 1000% At, the numerical

solution withA8 = T is smooth. After that, the shear flow makes the suppoft tifinner
and thinner, and the numerical solution displays nonphysical ripples. Reddcing At
does not get rid of these errors. The situation improves with smaller=igure 2 shows
that the numerical solution with6 = Z is a good approximation eventat- 2000+ At.

If the velocity is multiplied by co@rt), that is, we solve

f, + cog2rt) S|n29f —sirfof,| =0, (21)

along with the initial condition (19), then no ripples are seen even if with= 7z. Hence,
we believe that the occurrence of ripples is due to the rapid transmcﬁnmduced by the
shear flow, where the solution has a very narrow distributigh in

Equations (18) and (19) are used to do the computational analysis of convergence. Ta
shows that whemr and At are each halved, the error is reduced by a factor of 4 throuc
time=2.441406 with A6 = ;. After that, the error ratio increases very quickly since
AO=g;is not small enough to resolve the changes adnd hence some ripples occur.
Using A6 = 3, the solution is well approximated through tireel.220703, and Table I
shows that the error ratio is abo%nuntll that time. These data provide evidence that the
scheme is second order accurate in both space and time.

The functionf (r, 6, t) in the test problem corresponds to the functiex, v, t) in the
full model. Recall that it is noE itself which influences the dynamics in the model systen



TABLE |
Convergence Analysis of Advective Form withA8 = 2

Case
-1 =1 -1
Ar = 32 Ar = 64 Ar = 128
T _ 10 _ __ 25 case 2 case3
Time Norm At=2 At= At=gz Case 1 case2

0.610352 1-n 8.86 10* 2.04x 1074 4.81x 10°° 0.230 0.236
2-n 2.54x 1073 5.92x 1074 1.41x 107 0.233 0.238

1.220703 1-n 1.6% 1073 3.85x 107 9.02x 10°° 0.231 0.234
2-n 4.50x 1073 1.14x 1073 2.77x 10 0.253 0.243

1.831055 1-n 2.3% 1073 5.51x 1074 1.30x 10~ 0.234 0.236
2-n 6.15x 1073 1.71x 1073 4.15x 104 0.278 0.243

2.441406 1-n 3.04 1073 8.14x 1074 2.66x 1074 0.268 0.327
2-n 8.10x 1073 2.32x 107 5.84x 1074 0.286 0.252

3.051758 1-n 4.3210°° 2.28x 107 1.74x 1078 0.528 0.763
2-n 9.03x 1073 3.35x 10°° 1.80x 1073 0.371 0.537

3.662109 1-n 6.4% 107 4.56x 10°° 3.97x 1073 0.709 0.871
2-n 1.13x 1072 6.39x 1072 5.44x 1073 0.565 0.851

(a) N=16

{(b) N =32

{d) true solution

FIG. 2. Solutions of f; + 5 sin ¥ f, — sirf@f, =0 at selected times. Parts (a), (b), and (c) are numeric
solutions withA® = &, N = 16, 32, 64, respectively; (d) is the true solution.
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TABLE Il

Convergence Analysis of Advective Form withAf = 2

Case
1 1 1
ar=3% Ar=2% Ar =2
+ 10 5 25 2 3
Time Norm At=go At= At=Z5 ey o
0.610352 1-n 8.8% 10 2.04x 10 4.81x 10°° 0.231 0.236

2-n 2.54x 1073 5.92x 1074 1.41x 10 0.233 0.238

1.220703 1-n 1.6% 1073 3.91x 104 9.75x 107° 0.234 0.249
2-n 4.50x 1073 1.14x 1073 2.78x 10 0.253 0.244

1.831055 1-n 2.8%10°3 1.12x 1073 7.95x 1074 0.390 0.710

2-n 6.20x 1078 1.96x 1073 1.07x 1078 0.316 0.546
2.441406 1-n 1.1% 102 1.03x 1072 9.96x 1073 0.880 0.967
2-n 1.43x 1072 1.18x 1072 1.13x 1072 0.825 0.958

but rather the cohesion stress tensétx, t) (or its divergencé®) and thaio P is obtained
from E by integration ovevw (see Eq. (8)).

To get some idea about the sensitivitydf(x, t) to changes in the numerical parameters
particularly A9, we considered a modified test problem. This problem differs from th:
above in that it has terms that mimic those in Eq. (11) that describe elastic link format
and breaking,

fi+rp@) fr +a@) fp =a(r) — BN f

with a(r) =1 forr < 0.2, anda(r) =0 otherwise, an@(r) =0.1 forr < 0.3, andB(r) =
10.0 otherwise. By analogy with Eq. (12), we defined the stress ten$émom f(r, 6, t)
by the integral

1 r cosd .
2/f(r,«9,t)S(r)(rsin€)(r cosh, r sind)r dr do.

foli

We considered how the principal directions and rates of stress (the unit eigenvectors
eigenvalues o& P) varied witht for different choices ofA6. We found that in all cases

the eigenvectoTs rotated consistent with the shearing flow and that the directions of
eigenvectors and the magnitudes of the eigenvalues were almost the same for val@es c
from 5 to 3 even at late times whefh itself showed substantial rippling for the larger
values ofA#. We interpret this as indicating that the integrated quantities of interest ¢

accurately captured even with relatively crude discretizations if tfieection.

3. ADVECTION ALGORITHM

Several equations in the aggregation models include advection of a quantity in a t
dimensional incompressible velocity field. The method we use to discretize the advec
terms in Egs. (3)—(6) is LeVeque’'s high-resolution advection algorithm [20] as impl
mented in his CLAWPACK software package [19]. Here we briefly describe LeVeque
algorithm.
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LeVeque’s algorithm is concerned with solution of a scalar advection equation of
form

fi+u-Vf =0, (22)

where the velocity fieldi(x, t) is incompressible. The method dosat rely on operator
splitting to sequentially treat thederivatives and then thederivatives. This isimportantin
order to avoid artificial compressibility effects. Because of the incompressibility condit
V -u=0, theadvectivdorm Eq. (22) can also be written gonservativdorm as

These are equivalent for the differential equations, but discretizations based on the adve
form are generally different from and often superior to those based on the conservative f
Among the advantages of advective differencing is better treatment of patches of cdnste
On the other hand, advective differences may not preserve total mass. LeVeque's algo
proceeds in several steps, the first corresponding to a first-order upwind method, an
later steps giving a series of improvements to this basic method. The algorithm is a hy
in that the first step is written in advective form while the correction terms, though baset
advective differences, are written in terms of flux differences. The resulting algorithm
the good features of an advective differencing, but s fully conservative provided the disc
incompressibility condition given below holds. The method interpf@tas the cell-average
of f attimet" =nkoverthe celC; j =[x —h/2,x +h/2] x[y; —h/2, y; +h/2] shown

in Fig. 3. It makes use of the cell-edge velocities shown in that figure. The not&ions
andG; ;41,2 are used to denote numerical fluxes across the right and top edges, respect
of cellC; ;.

We first describe the steps involved in updat{rfg‘} to { fi?“} and then we interpret
them. For simplicity, we describe the algorithm as if the velocitiaadv were everywhere
positive. The actual algorithm can, of course, handle velocities of varying signs. The dif
ence between what we describe and the true algorithm is some additional logic to deter
and use data from the upwind direction for each cell edge.

Uij+1/2

Wi-1/2,5 fij Wit1/2,5

U;j-1/2

FIG. 3. Advection grid and interface velocities.
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The first step of the method can be written in advective form as
* 1/2 1/2
fiJ = fn - 7{u|n+1//21(](n - fl l]) + PT Q/Z(fn - fl i— 1)} (23)

Here, the notatiorf;j is used to indicate an intermediate valuefofnot the final value at
the end of the time step. Because of its advective form, this differencing clearly preser
constantf exactly. It turns out that, provided the discrete incompressibility condition

n+1/2 n+1/2 n+1/2 nt+1/2
Uiz — Yic1j2j Vi ji1j2 — Vij-12 =0 (24)

holds, the advective differencing is exactly equivalent to the conservative differencing
fined by

FI -1/2,j = u|n+11//22] fln 1,j (25)
2
Gij_12 = virjjf/l/Z fif_1 (26)
* n k
fr = f— H{Fi+1/2’j — Fi—12j + Gi j+12 — Gi j-1/2}- (27)

So Step 1 can be thought of in either form. For the following description as well as t
implementation in CLAWPACK, it is most convenient to think of the cell-edge fluxes &
being initialized to zero, and then Step 1 consists of updating the fluxes by:

Step 1.

Fio12j = Fi-12j + U.n+1l/22 i fita (28)

Gi, j-12 = =G;, i- 1/2+UI j /152 f|nj 1 (29)

During Steps 2, 3, and 4, the cell-edge fluxes are further modified as follows:

Step 2.
G' X . G . l k n+l/2 n+1/2 fn fn 30
ij+1/2 -= Ui j+1/2 — hU| 1/2,j Vi 1/21( ij i—1,j) (30)
F_ e F . }k n+1/2 n+l/2 fn f 31
2 = Fiaaag = Spuitrevi -z (f] = £l (31)

Step 3.
k

Fi_i2j = Fy2j + ‘UF+11//22, (1— H!“?fll//zz,j )(fiT - fin—l,j)QDifl/Z,J (32)

. l 1/2 k 1/2
Gij12 = Gijyz+ 5[vi) o (1 N ol ) (0 = ) @i 12, (33)

where®;_y,, ; and®; j_1/, are flux limiters which depend on local values{ciﬁ‘} along
the linesy = y; andx = x;, respectively.
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Step 4.

K ny12 1) nyas2
Gi-vj+1/2 = Gi-1j+1/2 — Hvifl//z,j > uifl//z,j

k
o R ) L L L ST

K nt12 1) nya2
Gij+12 = Gij+12 + pli-12i5 Ui_1/2

k
(1= S ) (8 = 0 @, ¢

K np12 1) ngap2
Fiyy2j-1 = Fit12j-1— Eui,jfl/Zé vi,j—1/2|

k
) (1 — ) (fif = ) ®ijor2 (36)

K nyr2 1) ngap2
Fivz = Fivyz + LU D5 v -1

k 1/2
X (1 - E|UirT}L—/1/2 ) (fi] = M) ®ij12. (37)
The final valueg '} are then obtained from

k
f = £ - plFicy2j = Fieazj + Gijryz = Gij-1l. (38)

LeVeque’s advection algorithm was derived usingave propagatiomperspective also
used successfully for multidimensional nonlinear conservation laws [17, 18]. The inter
tation of the steps of the algorithm is made with reference to Fig. 4 as follows: For Ste
we imagine that a piecewise constant function is constructed with vidlue all of cell
Ci.j. Then Eq. (28) accounts for the normal propagation of the vgfug, from cellCi_y |
to cellC; j, while Eq. (29) accounts for the normal propagation of the vdfje, from cell
Ci j_1tocellG ;. (Recall that in this discussion we assume thandv are everywhere
positive.) These fluxes are shown in Fig. 4a. If these were taken as the final values @
fluxes, the resulting method would be a simple first order upwind procedure. Step 2
takes into account transverse propagation of the piecewise constant function. The ug
motion of the wave which crosses the cell edge between Cells; andC; ; affects the
cell averages in cell€; ; andC; j11 and this can be accounted for by the modificatio
to the fluxG;i j;+1/2 given in Eq. (30). The modification is proportional to the area of tr

shaded triangle in Fig. 4b which %Zu”ll//zz_j vffll//fj. Similarly, the rightward motion of

in
the wave which crosses the cell edge between Celjs1 andC; ; affects the cell averages
in cellsC; ; andC;i1 j. This is accounted for by modifying the flu% 1,2 ; as done in
Eq. (31). If the fluxes after Step 2 were used to upddtg, the method would still be
first order but would have a smaller error constant and better stability properties thar
simple upwind method. For Step 3, linear approximations are used to represent the sol
in each cell in order to obtain a second-order method. Since the propagation of the
averages have already been accounted for in Steps 1 and 2, these linear approxim
have mean 0. For the propagation in #adirection, the approximation in cell; ; is linear

in x with slope%(fi? — fir‘_l’j)cbi,l/z,j and is constant ity. The limiter ®;_,,5 j is used
to prevent the introduction of spurious oscillations or overshoots near steep gradiénts
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Gijyi/2
Fi_1/0; F; i
S /25| uk iy i+1/2,5 . vij
-------- O RO E—
v vk
Gij-1/2 a b

Peiid e et

c d

FIG. 4. Geometric picture of LeVeque’s advection algorithm. (a) Normal propagation of piecewise const:

cell values at speeds=u/""7’>, andv =1u]7*7,. (b) Transverse propagation of piecewise constant cell values

Area of shaded triangle &k2ul™}/Z, v*}Z, . (c) Normal propagation of correction wave at spefd/; ;. Dashed

lines are contours of the linear approximation in &ll, ;. (d) Transverse propagation of the correction wave

with velocity (U2, o2 ).

Normal propagation of this linear function from cé€l|_, ; into cell C; j corresponds to
the modification to fluxm_1/ j given in Eq. (32) and to the picture in Fig. 4c. Similarly,
an approximation tof which in each cell is linear iry and constant irx gives rise to
the modification to fluxG; j_1,> given in Eqg. (33). If the fluxes after this step were usec
to update] fj; }, the method would be second-order accurate. Even without the limiters,
would differ from the Lax—Wendroff scheme because of its use of upwind differencin
LeVeque calls the waves which correspond to Stepr8ectionwaves. Step 4 accounts for
the transverse propagation of the correction waves. The upward motion of the correc
wave between cell§;_; ; andC; j affects the fluxes across the top edges of both of thes
cells. (See Fig. 4d.) This is accounted for in Egs. (34)—(35). Note that these changes
just:t%v{‘ff/ﬁi times the changes in Eq. (32) and so are easy to calculate. In a similar w
the rightward motion of the correction wave between c@lls_, andC; ; affects the two
fluxes modified in Egs. (36)—(37). The transverse propagation of the correction waves ¢
not change the formal order of accuracy of the method, but, in LeVeque’s computatio
experiments, it often substantially reduced the magnitude of the error.

LeVeque’s algorithm requires that the discrete incompressibility condition (24) be s
isfied at time(n + 1/2)k. Chorin’s scheme, which we use to solve the Navier—Stoke
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equations, enforces a different discrete incompressibility conditin, ; —uf' ; +
v'j11—v'j_1 =0, ateach time level. We define cell-edge velocities from the grid veloc
ities determined by Chorin’s scheme as

1
+1/2 1 1
uin—1/2,j = Z{uin.j +ult u'yj + uin—+1,j
(39)

n+1/2 1 n n+1 n n+1
Uij-12 = Z{ui,j U AU U g

Itis easy to check that these satisfy (24).

4. NUMERICAL METHOD FOR THE E EQUATION

For the elastic link transport equation (11) (tHe &quation”), we use LeVeque's high-
resolution method (discussed in Section 3) for the advection terms ix-fhane, the
Fourier-collocation spectral method (discussed in Section 2) fof-therivative, and the
finite-difference method based on the Bell and Marcus approach fordeeivative. Then
the cohesion force densit§ due to link formations is approximated by numerical quadre
ture of Eq. (12).

To test this method, we consider a special model, for which the analytical solution
be derived and compared with the numerical solution. The right hand side of Eq. (11) i
to be zero and the velocity field is the shear flaws ug(y — 0.5, 0) with ug constant. Then
the equation of interest is

UpSin 29

5 E, — UpSif9E, = 0. (40)

1
Et+U0<y_2)Ex+r

For a similar equation but without-dependence,

inp .
+r to S|2n g — Ugsinfogy =0,
and with initial condition
1
g, 0,0) = 5[1 — tanhay (r — 0.2)], o1 = constant (41)

the exact solution is
1
g(r,6,t) = E{l — tanhay[r (1 — ugt sin 29 + (upt)?sirf 9)Y2 — 0.2]}. (42)

Also for the equation

1
1/ft-i-UO<)/— Z)Iﬂx =0,
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with initial data

xO—lltnh x12 1\ 3)’ = constant
Y(X,Y, )—5 —ta az(—é) +(y—§>—(ﬂ3) ,  az=constan]

(43)

the analytic solution is

2 2 2
tp(x,y,t)z%{1—tanha2[(x—uot<y—%>—%) +<y—%) —(1%) 1} (44)

It follows that the exact solution to (40) with initial conditiar, 6, 0) x ¥ (X, y, 0) is
Ex,v,t) = E(X,y,r,0,t) =g, 0, )Y (X, y,t). (45)

Hence the gradient d in thex-plane is

V.E _ . ax, b
<EX, T, 0,t) =qg(r,0,t)Vxyr (X, t) = g(r, 6, t) bx.t) )’ (46)

wherea(x, t)= %(x, t) andb(x, t) = %(x, t). The cohesion force can be calculated as

fP(x,t) = %/(V-VXE)S(M)vdv

2a(x, t b(x, t
> [awn (vla(x e )> S(lvl) dv
vivoa(x, t) + vsb(x, t)

_ <a(X,t)|1+b(X,t)|2> (47)

ax,t)la+b(x, )13

where
1 2 roT 3
I, = é/g(v, t)Uls(|V|)dV:/ / cog g(r, 6, t)S(r)r3de dr,
0 Jo
1 ropem
l, = é/g(v, t)v1v28(|v|)dv:/ / siné cosAg(r, 6, t)S(r)rde dr,
0 Jo

I3 = %/g(v, t)v§S(|v|)dv=/ /ﬂ sirfog(r, 6, t)S(r)r3dedr.
0 JO

So, we can calculate exactly from (45) Vi E exactly from (46), andP from (47) with
numerical quadrature used to evaluate the integralg, andls. We can compare the results
with those obtained by solving (40) numerically to obt&infollowed by use of a central
difference formula to approximaté, E and numerical integration to firf (x, t).

Table Il shows the comparison between the true solution and the approximated solu
at time=0.2441406, withuq = 15, ap = 25, andAd = 1s- WhenAr is fixed, and the mesh
size inx-space is decreased, the errorEn| E — E||, changes little, but the errors in
the partial derivative§ Ex — Ex|l and || Ey— Ey|| decrease by a factor of about 3; when
Ax = Ay are fixed, and\r is decreased,E — E| decreases by a factor of about 3, wherea:
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TABLE Il

Comparison betweerE and E at Time = 0.2441406

Ar=L At=2 Ar=2 At=2%

Ax=Ay=21 Ax=Ay=2 AX=Ay= AX=Ay=2
IE - Ell 1.3342x 1073 1.0496x 10°3 4.2851x 10 3.1006x 10-*
IE — E|l, 2.6345x 10 1.9225x 10°* 7.9515x 1075 5.3449x 10°5
I1Ex — Exlla 3.6433x 102 1.2457x 10°2 1.1300x 102 4.6758x 103
I1Ex — Exlla 6.1868x 1073 2.2788x 10°3 1.8949x 10°3 7.8651x 10
IE, — E,ll 3.6600x 102 1.1879x 10°2 1.0577x 10°2 3.4377x 10°3
IE, — Eylly 6.0908x 10°3 2.1178x 1073 1.7184x 1073 6.0374x 10°*
It — |1, 2.0506x 104 7.8375x 10°5 6.7151x 10°5 2.4220% 10°5

665

the partial derivatives are almost the same. If altof, Ay, andAr are halved| E — E||,
IEx — Exll, IEy — Eyll, and||fP —fP|| are reduced by a factor of 3.3. So, the numeric:
method displayed between first and second order convergence on this problem. Fig

displays the force field fof® andfP with Ax=Ay=Ar = %
them is evident.

32°

27T TN Lo 7 TN
2 B B T [N AN BRI
s Vg
MR R A AR EA
NNN LS SN Ll
N e -~ P
-z T RSN
A AT TN LA TN N
/7T TN A 27T TN
[

Little difference between

FIG.5. Force fields on shear flow at sequential times. Left column represents the results from the true sol
E; right column results are obtained from the numerical soluEon
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5. NUMERICAL EXPERIMENTS ON FULL MODELS

5.1. Algorithms for Full Models

To simulate the general form of the aggregation continuum models based on Egs. (1)-
we discretize them spatially and temporally. We assume that the fluid domain is square
that the spatial step sizes in tReandy directions are equal. The boundary condition of
the domain is periodic which indicates that corresponding discretized points on the left :
right, and on the top and bottom boundaries are identical.

We use Chorin’s projection-based finite difference method [8] to solve the Navier—Stol
equations (1)—(2). For the transport of the nonactivated platelet density and ADP concet
tion in Egs. (3) and (5), we couple LeVeque’s high-resolution conservative algorithm for ¢
vection in incompressible flow [20] for the advection terms with an alternating-directions
implicit (ADI) method [21] for the diffusive terms. This is done by Strang-splitting to mor
accurately calculate their transport. We also combine LeVeque’s high-resolution metl
for the advection term with a hybrid finite difference-spectral method forths terms to
solve for the interplatelet link density in Eq. (6) (demonstrated in Section 4). The nonline
reaction terms of Egs. (3)—(6) are calculated using analytical solutions which are base
the fact thatR(c) is assumed to be a step function. Finally, the cohesion force density
approximated by numerical quadrature.

Having described the individual numerical methods for each term in the continut
models, we summarize the complete numerical procedure for advancing the full mode
single time step:

(1) Use the current values of the interplatelet link densityo obtain the cohesion
force densityf? via Eq. (7).

(2) Solve the Navier—Stokes equations (1)—(2) with the new ftft¢e determine the
velocity fieldu. At the end of this step, botl” andu™*! are available. These are used to
define the half-time level velocity"**/2 needed in the advective algorithm.

(3) Update the densities ¢f,, ¢4, ¢, andE in Egs. (3)—(6) to account for the advective
and diffusive transports.

(4) Update further the variables,, ¢4, ¢, andE to account for their reaction terms.

For visualization purposes, we define a functiox, t) as

Z(x, 1) :/E(x, v, t)dv,

so thatz measures the concentration of linksat all directionsv. Since aggregation in the
models is maintained through the interplatelet links, it is reasonable totballhggregation
intensity. We can derive a transport equationZérom Eqgs. (4) and (6) (see [11])

i—tz +u-Vz= ¢>§/a(|vn dv — /ﬁ(lvl)E dv.

5.2. Competition with the Link Formation and Breaking

Whether an aggregate grows or shrinks is influenced by competition between new che
cally induced activation and link formation on the one hand, and shear-induced link break
on the other hand, and we are interested in conducting experiments to study the dyna
of this competition. Real aggregation happens inside blood vessels and involves impol
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interactions between platelets and the vessel walls. In addition, as a real aggregate grov
projects into the vessel lumen, the space available for flow decreases and consequen
blood flow can be accelerated, perhaps substantially, in the vicinity of the aggregate.
can have several important consequences: The shear stress exerted on the aggrege
increase substantially, and this might limit further aggregate growth because the str
may become greater than new interplatelet bonds can withstand. If the stresses on e
gregate become large enough, portions of the aggregate may break free from the wall
is known as embolization and is important medically, because the embolus (the part ¢
aggregate separated from the wall) can occlude a smaller vessel downstream. The .
erated flow near the wall-bound aggregate may also increase the rate at which activ
chemical (ADP) released near the aggregate is washed away, and, while it may inci
transport of new nonactivated platelets from upstream into the vicinity of the aggregat
also reduces the time period during which these platelets are near the aggregate ar
become activated and form cohesive bonds with platelets of the aggregate. We woulc
to simulate and study these processes in a model that includes platelet-wall interaction
the growth of wall-bound platelet aggregates, and we are working to extend our mo
and numerical methods to handle such situations. For the version of the model addre
in the current paper, which does not allow for platelet adhesion to vessel walls, we mc
the set-up used for computational experiments in [11, 12] to directly increase the stre
to which the aggregate is subject, and, in some experiments, to also reduce the recrui
of new platelets to the aggregate.

For these experiments, the background flow was taken to be a spatially periodic ste
tion point flow; initially, nonactivated platelets had a uniform distributipn£ 1) and no
activated platelets were presepf & 0 and henc& = 0); and the initial ADP concentration
was taken to have circular support centered on the stagnation point. These assumptior
respond to an experiment in which activating chemical is dropped into a stirred susper
of nonactivated platelets. The pull of the stagnation point flow, along with the releas
more ADP and the consequent activation of additional platelets, contributed to the grc
of a progressively larger elliptical aggregate. We allowed these factors to increase the
of aggregation for a while, then, to mimic the extra stresses that would be applied to a\
bound aggregate as the vessel lumen decreased, we applied extra forces to pull outw.
the aggregate. We computed the effect of these extra forces for a specific choice of
formation rate and for each of several choices of link breaking rate. Link formation betw
two activated platelets was assumed to occur only when the distance separating the ple
was about 1. That is, the link formation rate was chosen to be like a bell-shape func
centered negwv| =1 (See curver in Fig. 6.) Four cases were tested:

1. We assumed that the breaking rate was almost Qvfor 1, increased smoothly
betweerjv| = 1 and|v| = 2 to a constant value fov| > 2. That is, we assumed that existing
links would be broken only very slowly when the linked platelets were very close to ¢
other, and that the links would break at a constant rate when stretched to a length gr
than twice a platelet’s diameter. This breaking rate function is shown in Fig. 6 (Byyve

2. The link breaking rate was similar to that in Case 1 [fdr< 1.5, but increased
rapidly (exponentially irjv|) for |v| > 1.5 (curvep; in Fig. 6).

3. The breaking rate was the same as in Case 1. In addition, when we imposed the
forces to pull outward on the aggregate, we simultaneously turned off all new chemic
induced platelet activation.
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10

o 1z 3 ) 5
FIG. 6. Creating and breaking link rates. Curvés a formation link rate; curves, andg, are breaking link
rates. Horizontal axis is/|.

4. The exponential link breaking rate function of Case 2 was used, and no furt
platelet activation was allowed after the extra forces were imposed as in Case 3.

The cessation of platelet activation in Cases 3 and 4 was intended to mimic the effec
faster wash-out of ADP, and the shorter time for activation and aggregation that wo
accompany increased flow rates over real wall-bound aggregates.

At each of several times, we plotted the velocity field, the activation threshold concent
tion curve (dashed line), and several contours of the aggregation intensity (solid lines). F
the contours and velocity field plots for Cases 1 and 2 in Figs. 7a and 7b, we see only
interior contour of aggregation intensinreaking for Case 1, and while mareontours
breakin Case 2, the total aggregate is stillintact and the location of the ADP threshold ct
in the vicinity of the stagnation point does not change much as time progresses. In Ca:
the link breaking ratgg was almost constant when the bonds were long (vg= 2), so
there is virtually no difference in the rate at which bonds of length, |say; 2 and|v| =3
break, but each of the latter bonds exerts 50% more force because it is strained 50% n
We think that a population of relatively few long bonds provides much of the force holdir
the aggregate together in Case 1.

In Case 2, the bond breaking rate increased sharply|wifor [v| > 2, but the aggregate
still held together. Recall that in Cases 1 and 2 new activation is allowed to contir
throughout the experiment. Examination of the flow fields in Fig. 7 shows that nonactiva
platelets are carried across the activation-threshold curve (dashed curve) toward the ¢
of the aggregate. These newly activated platelets formed new bonds|{tH at the
time of formation) to strengthen the aggregate. In Case 2 the competition between |
activation and formation of short bonds and rapid breaking of long bonds leads to cohe:
forces weaker than those in Case 1 but still strong enough to keep the aggregate intact
formation of new short bonds also contributed to keep the aggregate intact in Case 1.

The influence of new bond formation involving newly activated platelets was eliminat
in Cases 3 and 4. In Case 4, long-links also broke quickly, and in Fig. 8b we see t
without the compensation of new short bonds, the cohesion force decreased, and the ce
portion of the aggregate became progressively thinner until the aggregate broke in t
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(a) (b)

FIG. 7. The effects of link formation and breaking with new activation. (a) Case 1, (b) Case 2. Large arri
and vertical lines indicate locations of imposed extra forces.

This calculation illustrates that, under conditions intended to simulate those which ob
when a wall-bound aggregate grows to block a substantial portion of a vessel, the r
aggregates can break up as real aggregates sometimes do. In Case 3 (Fig. 8a), there v
activation than in the corresponding Case 1, but the aggregate held together even wh
calculation was carried out to a time 33% later than the breaking time in Case 4. The
that the aggregate broke in Case 4 but not in Case 3 lends support to our contention
population of long links helped hold the aggregate together in Case 1 earlier.

5.3. Mechanical Properties of Platelet Aggregation Systems

Using the numerical methods we developed for the platelet aggregation contint
models, we also began a preliminary analysis of tiechanicalor visco-elastic-plastic
characteristics of the platelet aggregate composite material. From the full continuum r
els, the platelet aggregate composite materialis affected by platelet activation, link forme
and breaking, and fluid motion as time advances. To analyze the mechanical charactel
of this material, we designed a numerical experiment to concentrate only on the comp
material itself. The point of these experiments is to see how the bulk mechanical prope
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(a) (b)

FIG. 8. The effects of link formation and breaking without new activation. (a) Case 3, (b) Case 4. Lar

arrows and vertical lines indicate locations of imposed extra forces.

of the composite material depend on the link formation and breaking sates,andj(|v|),
on the density of activated platelets, and on the mechanical stiff€$g), of individual

links.

Our experimental “device” is showed in Fig. 9. Two parallel plates are placed a distar
L apart; the bottom one is fixed and the top one is movable. Activated platelets witl
uniform concentratiop, = ¢ fill the space between the two plates. When the top plate

dragged to the right at speeda uniform shear flow gradually develops in the material.

We solve the system of equations,

p(Ug+U-Vu) = —Vp+ uAu+ P 4 P,
V.-u=0,

0
—_ -V¢a=0
ot +U- Vg, ,

Et+u-VyE+ (v-Vu) - V,E =0,

fP(x, t) = %/V~VXE(X, v, 1) S(|v))vdv.

(48)
(49)

(50)
(51)

(52)
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_U,  moving plate

Q. :

fixed plate

FIG. 9. The device for testing the mechanical properties of platelet aggregate material.

To model the plates, we use the immersed boundary method [23]. Each plate isrepres
by two strings of immersed boundary points and a set of elastic springs joining the po
There is a spring between each consecutive pair of points in a string, another spring bet
corresponding points on the two strings, and a spring between each point and the
before and after the corresponding point on the other string (see Fig. 10). This criss-(
arrangement of springs makes each plate quite rigid. The separation between the s
which make up a plate is one mesh widithThis helps separate the flow of interest in th
space between the plates from the flow outside the plates. Each immersed boundary
on a wall string is also connected by a spring to a corresponding “tether” point. The te
points for the bottom plate are kept fixed in space to anchor this plate. The tether point
the top wall can be moved to the right with a prescribed spea&tthen this is done, the
springs between the moving tether points and the immersed boundary points on the top
generate forces which push the fluid near this plate to the right. All of the spring forces
transmitted to the nearby fluid and thus define the force densityftérnm Eq. (48) above.

We chooseTl and use it in (54) to determing initially, move the top wall at constant
speedv until the fluid motion reaches steady state, and then release the top wall fron
tether points to see the rebound of the composite material. A marker on the top we
traced to measure the displacement of the wall. We also sum the spring forces exert:
the tether points of the bottom plate. This is the force needed to hold this plate still w
it is pulled on by the motion of the platelet composite and so it can be used to measur
shear stresss() on the bottom plate.

We performed a series of experiments in which different times were allowed for |
formation before motion begai; = 0.15625 T, =0.3125, andl, = co. For eachTl , we
did a set of calculations in which the top wall was moved at speed.1, 0.2, 0.4, 0.8,
or 1.0. Figure 11 shows the shear stress on the bottom wall at steady state versus the
ratey = v/L. We see that the stress increases as the shear rate is increased. In the s
case in which the interplatelet link stiffnekg|v|) = 0, the composite material between the

FIG. 10. Two strings of immersed boundary points and a set of elastic springs form a plate.
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FIG.11. Shear stress on the bottom wall at steady state for different link formation times. Here curxes are
fluid only; +, Ty; %, T2; ando, T...

plates should behave as a Newtonian fluid. That this holds for the calculations is showt
the linear plot in Fig. 12.
Curves showing the horizontal displacement of the top wall varsusdifferent speeds

v are displayed in Fig. 13. The curves show that, for these experiments in which no |
formation or breaking was allowed after the flow began, the material “remembers”
original configuration and recoils when the top wall is released from its tethers. O
several damped oscillations the displacement drops towards 0. The damping is cause
the fluid viscosity. The overall recoil is similar for all andv. For fixedT, largerv lead

to larger displacements, and larger amplitude oscillations during recoil. The frequency
the oscillations is approximately constant for edchbut increases with highér. This

is because largef allows more links to be formed before the motion begins and the
makes the material stiffer. These results show that under the conditions (without new |

0 ! L L 1 L L
0 0.2 0.4 0.6 0.8 1 1.2 14

FIG. 12. Shear stress on the bottom wall at steady state with the fluid only.
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FIG. 13. Displacement of top wall with different: v =0.1, 0.2, 0.4, 0.8, and 1.0 from solid line up to long-
short dashed line. Parts (a), (b), and (c) represent the initial link formation Tim&s, andT,,, respectively.

formation or breaking) of these experiments, the aggregate composite material beha
a “viscoelastic” solid.

6. CONCLUSION AND FUTURE WORK

Arobust numerical scheme has been assembled for simulating the behavior of Fogel
continuum models of platelet aggregation. These involve multidimensional high-resolu
finite difference schemes for advective transport, ADI schemes for diffusive transport,
a new hybrid finite difference and spectral method for the models’ elastic link transy
equation. Importantly, the new methods allow the gt which links break to depend on
the strain on the link.
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We have begun to investigate the effects that different assumptions about the bond br
ing rate and the bond force function have on the dynamic behavior of aggregates ir
elongational flow. From the computational experiments, we could see the competition
tween new chemically induced activation of platelets and link formation on the one ha
and shear-induced link breaking on the other hand. In a certain situation and for cer
parameter values, the aggregate broke into two portions. This helps us to establish &
merical experiment in which to explore the medically important embolization process. \
have also begun experiments to explore the mechanical properties of the aggregates i
continuum models, as functions of kinetic and mechanical parameters and of the condit
under which the aggregates formed.

In order to carry out a wide range of numerical experiments on the models, it will |
helpful to improve further on the computational efficiency of the method. In the simulatio
to date, we noted that the bond-density functiors often 0 over much of the domain (in
x-space), and varies slowly over another large part of the domain. The steep gradient:
highly localized in regions that change with time. We are exploring the use of adaptive m
refinement algorithms [4, 3, 2, 14, 5] in tkeandv-planes for thée equation to concentrate
the computational effort in the most needed regions to yield well-resolved results for mt
less computational work.

It is also possible to use parallel computation to speed the calculations. Because o
explicit time differencing used in the most expensive part of the calculation (the solution
Eq. (6)), and because kispace the stencil of the scheme for Eq. (6) is very local, parall
solution of this equation should be fairly straightforward and effective.

The tools developed in this paper and the extensions just mentioned will allow us
investigate much more systematically the mechanical properties of the platelet compc
material and will play a major role in studying new forms of the aggregation models whi
include platelet-wall interactions [10].
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